Exercise 3.3.9

What is the sum of the Fourier sine series of $f(x)$ and the Fourier cosine series of $f(x)$? [What is the sum of the even and odd extensions of $f(x)$?]

Solution

The Fourier sine series expansion of $f(x)$, a piecewise smooth function defined on $0 \leq x \leq L$, is given by

$$
f(x)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L},
$$

where

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

It represents the $2 L$-periodic odd extension of $f(x)$ to the whole line $(-\infty<x<\infty)$. That is,

$$
\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}= \begin{cases}f(x) & 2 m L<x<(2 m+1) L \tag{1}\\ -f(-x) & (2 m-1) L<x<2 m L\end{cases}
$$

for any integer m. On the other hand, the Fourier cosine series expansion of this same function on $0 \leq x \leq L$ is given by

$$
f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L},
$$

where

$$
\begin{aligned}
A_{0} & =\frac{1}{L} \int_{0}^{L} f(x) d x \\
A_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
\end{aligned}
$$

It represents the $2 L$-periodic even extension of $f(x)$ to the whole line $(-\infty<x<\infty)$. That is,

$$
A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}= \begin{cases}f(x) & 2 m L<x<(2 m+1) L \tag{2}\\ f(-x) & (2 m-1) L<x<2 m L\end{cases}
$$

for any integer m. Add the respective sides of equations (1) and (2).

$$
A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}= \begin{cases}2 f(x) & 2 m L<x<(2 m+1) L \\ 0 & (2 m-1) L<x<2 m L\end{cases}
$$

This result holds where $f(x)$ is continuous; at points of discontinuity the average of the left-hand and right-hand limits is taken.

